Microstructure, flow behavior, and bulk texture evolution of cold drawn copper—silver composites

S. Dodla a,*, P. Thiem b, M. Krüger b, D. Dietrich c, A. Bertram a

a Institut für Mechanik, Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg, Germany
b Institut für Werkstoff- und Fügetechnik, Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg, Germany
c Institut für Werkstoffwissenschaft und Werkstofftechnik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany

ARTICLE INFO

Article history:
Received 29 January 2015
Received in revised form 3 June 2015
Accepted 17 June 2015
Available online 22 June 2015

Keywords:
Cu–Ag composite
Cold drawn
Lamellar phase structure
Electron backscattered diffraction (EBSD)
X-ray diffraction (XRD)
Compression testing
Texture measurement

ABSTRACT

In the last 20 years, several groups used nanostructured composites to produce high strength conductor materials for magnetic applications. The mechanical strength of Cu–Ag composites is strongly influenced by metal forming operations. Within the scope of the paper, the microstructure, the mechanical behavior, and the texture evolution are investigated for two cold drawn Cu-63wt%Ag composite rods. The aim of these investigations is to understand the influence of the microstructure and texture evolution on the mechanical behavior. The investigation is carried out using optical microscopy, scanning electron microscopy (SEM) along with electron backscattered diffraction (EBSD), X-ray diffraction measurements (XRD), and compression testing. The microscopic images show that the drawn samples mainly have a lamellar structure of Cu and Ag phases. However, elliptical shaped regions of primarily solidified copper solid solution are also observed. With increase of plastic deformation, the average lamella thickness of both phases has been decreased. EBSD measurements show that abundant banded regions are observed in the Ag phase while very few banded regions are present in the Cu phase. The bulk XRD measurements reveal that both phases of the drawn samples initially have the same type of texture, and both phases develop the same brass-type (110)(112) texture. The texture intensity increases for both phases as the drawing strain increases. Compression tests are performed at constant strain rate of 10^{-4} s^{-1} at room temperature. The stress–strain curves under compression are presented for two different drawn samples. The texture measurements after compression reveal that the texture becomes more pronounced.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Copper based composites (Cu–Ag, Cu–Be, Cu–Nb, etc.) are used as high-strength conductors in pulse magnets, hybrid magnets, and resistive (bitter) magnets because of their unique combination of high mechanical strength and high electrical conductivity [1–4]. In general, two-phase Cu–Ag composites containing 6–72 wt% Ag are used as conductor materials for the application in magnets produced by cold drawing along with intermediate heat treatments [5–9]. The microstructure will strongly influence the mechanical properties of Cu–Ag composites [10]. By changing the concentration of Ag in Cu-based composites and also different processing methods, the morphology and texture result in anisotropy of the mechanical properties. Therefore, various new and improved Cu–Ag composites have been used in the field of magnetic applications. However, some questions have to be answered, such as: (1) what is the appropriate Cu–Ag composition, and (2) what processing technique develops the required mechanical properties. For example, with increase in the concentration of Ag, i.e., 7 wt%, 24 wt%, 72 wt%, the ultimate tensile strength increases with increase in the drawing strain [11]. Furthermore, the strength level can be increased by an appropriate heat treatment [11,12]. In the study by Herringhaus [13], compression and tensile tests have been conducted for Cu–72 wt% Ag eutectic composites, in which the mechanical properties are presented as a function of the wire deformation. Following cold-drawing to high strains, the eutectic Cu–Ag composites develop an ultimate tensile strength as high as 1.15 GPa [13]. During the metal forming operation by cold working, the lamellar nature of these two phases, one a Cu-rich, and the other an Ag-rich solid solution, have been compressed and

* Corresponding author.
E-mail address: srihari.dodla@st.ovgu.de (S. Dodla).

http://dx.doi.org/10.1016/j.jallcom.2015.06.145
0925-8388/© 2015 Elsevier B.V. All rights reserved.
elongated resulting in a fine and dense structure. The phase boundaries and grain boundaries of these two phases block the dislocation movement through the alloy, causing an increase in strength of the material. Therefore, such work-hardened composites containing a fine layer structure, show higher strength than that expected from a simple rule of mixture [5,14,15]. Following cold drawing operations, the Cu–Ag composite experiences microstructural changes. Therefore, the rods produced by drawing exhibit anisotropic properties. An important example of an anisotropy is the crystallographic texture.

Many studies of the texture evolution during large plastic deformations have been concentrated on single phase metals. For example, the texture evolution of silver has been examined during equal channel angular extrusion (ECAE) [16,17]. In the case of two phase Cu-based composites, the presence of the second phase will affect the texture evolution. In the recent work, these effects have been studied for Cu–Nb composites under plastic deformation by accumulative roll bonding [18,19]. Recently, the local and global texture analysis of CuAl alloys have been examined by wire drawing, where microstructure change has been investigated by varying the stacking fault energy [20]. The texture evolution of an eutectic Cu–Ag composite for different rolling reductions has been described by Ref. [21]. They report, the alloy-type texture of the Ag-rich phase is found for both Cu and Ag phases. An unusual texture in the Cu phase of the Cu–Ag eutectic composite has been observed, and explained in terms of twinning mechanism, i.e., Ag contributes propagation of twins into Cu. Of these different methods, the most common and simple method for strengthening composites includes cold drawing (strain hardening) [22]. It is clear that the texture of different drawing reductions also influences the mechanical properties. Besides, the effect of texture in the near-eutectic cold drawn Cu-63 wt% Ag composite due to plastic deformation on the mechanical properties has not yet been reported. With increase in the cold drawing operation, the mechanical strength is increased, and the texture increases significantly. We performed the experimental investigations on two differently cold drawn Cu–Ag rods to estimate the texture evolution and also to study the influence of the mechanical behavior. These rods (diameters d_1, d_2) with drawing reductions $\eta_1 = 0.9$ and $\eta_2 = 2.1$ ($\eta = \ln(A_0/A)$), respectively, are chosen to determine the benefits and limitations in producing high strength conductor materials, where A_0 and A are the initial and the current cross section of the specimen, respectively.

In the present work, near-eutectic (Cu–63wt%Ag) cold drawn samples of diameter 12.42 mm and 6.73 mm are examined to determine the influences that changes in the microstructure and texture, have on the mechanical behavior. The microstructural refinement and the anisotropy are accompanied by the evolution of texture. This understanding of the development of texture in the rods will provide a basis for the development of new conductor materials with optimum microstructure. Besides the detailed microstructural investigation of the cold-drawn Cu–Ag rods, this work also reports the significance of the anisotropy of two different rods to the development of the conductor materials. The investigation has been carried out using optical and scanning electron microscopy, electron backscattered diffraction (EBSD), X-ray diffraction (XRD), and compression testing. Macro-texture XRD measurements show that both Ag and Cu phases develop a brass-type texture, which is also present after compression tests with different intensities. The EBSD measurements reveal that the Ag phase consists of shear bands or twinned regions, while in the Cu-phase very few shear bands or twinned regions are observed. The brass-type [110]/[112] texture expected for the Ag-phase and not for the Cu-phase, has been discussed previously [21]. The metal or copper-type [112]/[111] texture is expected for rolled pure copper and its alloys [23,24]. Possible reasons for this brass-type texture for the copper phase are presented in the section Results and discussion.

2. Experimental procedure

The Cu–Ag rods are supplied by the ‘Allgemeine Gold-und Silberscheideanstalt’ in Pforzheim, Germany. The material with initial diameter of 20 mm was processed by continuous casting. After casting, the rods are swaged to 20% reduction, and then cold drawn to reduction in diameter of 12.4 mm and 6.7 mm from a starting diameter at room temperature. Two different textured Cu–Ag rods (d_1, d_2) are examined to describe the microstructure development and the evolution of crystallographic texture. The samples are cut in both longitudinal and transverse directions for microstructural observations. The sample direction and the cutting plane are shown in Fig. 1a. Fig. 1b displays the cylindrical rods. In order to study the effect of the microstructure on the mechanical behavior, the samples are manufactured from the drawn rods in two different directions (longitudinal and transversal) by using an electric discharge machining (EDM) process. The samples are denoted by a symbol T in the transverse direction and L in the longitudinal direction.

The samples are cold mounted in an epoxy resin, ground using silica carbide (SiC) paper (180-2400 grit), machine polished with 3-μm diamond particles and a fine polish with 1-μm diamond particles using a water based lubricating solution. The specimens are chemically etched for 45 s in Nital solution (30% nitric acid in 70% ethanol) for imaging. After that a final OPS polishing step and an ion polishing with 3 kV Ar ions for 1 h (CATAN PECS) was applied to obtain a smooth clean surface suitable for EBSD measurements. The samples are examined in a scanning electron microscope (FEI ESEM XL30 FEG equipped with EDX and EBSD) and in a reflected light microscope (Inverted light microscope ZEISS Axiosvert 200 M equipped with Film and AxioCam MRC 5).

The uniaxial compression test is a simple test for the study of the flow behavior and also for the determination of the mechanical properties. In this type of test, the specimen shape allows more surface for texture measurements. The samples are tested in compression along longitudinal L and transversal T directions to gain a better understanding of the influence of different microstructure on the yield strength of the material. Besides the compression tests also shows the anisotropic nature of samples since the rods are cold drawn. The tests have been performed for both cylindrical samples in the two directions (longitudinal and transversal) on a universal testing machine (Zwick/Roell Z100). The tests are performed at a constant strain rate of 10^{-4} s$^{-1}$ at room temperature. The initial dimensions of the specimen are 1.7 mm in diameter and 2.5 mm in height. To minimize the friction between the surface of the samples and the supporting holders, a Boron Nitride [BN] lubricant spray is used.

For the macro-texture using X-ray diffraction measurements (XRD), the samples (uncompressed, compressed) are mounted in a cold setting epoxy resin, are grinded using SiC sheets with grade numbers (P300, P480, P800, P1200, P2400, P4000) and machine polished with 3 μm diamond particles and finished using 1 μm. Finally, the samples are placed in the vibrating polishing machine for 20 h using MasterMet 2 suspension. These samples are cleaned in ultrasonic cleaner for 10 min using isopropanol alcohol solution. For XRD measurements we used the X-ray diffractometer XRD3000PTS built by Rich. Seifert & Co. GmbH & Co. KG, Aahrensburg, Germany. The XRD3000PTS is a 4-axis diffractometer to analyze the phases and texture. We operated the measurements by using an X-ray tube with chromium anode in point focus mode and 1D-detector with secondary K$_\beta$ filtering. Raw texture data is
collected on metallographic samples using the texture measurement mode. Using the XRD software (Seifert Analyze Version 2.285), (111), (200) and (220) pole figures for copper solid solution crystals, and the (111), (200), (220), and (311) pole figures for silver solid solution crystals have been acquired. The MTEX software [25–28] is used to reconstruct the orientation distribution function (ODF) from the XRD pole figures with the crystal orientation densities in a 3D orientation space defined by the three Euler angles \(\phi_1 \), \(\phi \) and \(\phi_2 \). Textures in this article are presented in terms of (110), (111) pole figures and \(\phi_2(=0 ',45 ',65 ') \) sections of the ODF in the space of Euler angles \((\phi_1,\phi)\leq 90 \).

3. Results and discussion

3.1. Microstructure and initial texture of the sample \(d_1 \)

Fig. 2 presents the optical and SEM micrographs of the drawn sample \(d_1 \) in the transversal (T) and longitudinal (L) direction at
different magnifications. Fig. 2A is an optical micrograph showing a
grain structure with an average grain size of 50 μm. In Fig. 2B and C,
the light phase is the Ag-rich phase and the dark phase is the Cu-
rich phase. The microstructure is formed of a fine lamellar struc-
ture of Cu and Ag phases, and also elliptically shaped Cu inclusions
(due to the drawing process) embedded in an Ag-rich matrix exist.
The optical image in Fig. 2D shows an elongated grain structure in
the longitudinal (L) direction, and the SEM micrograph in Fig. 2E
and F shows a fine lamellar structure of Cu and Ag phases with an
average lamella thickness of Cu (LT_Cu) of 65 nm and Ag (LT_Ag) of
about 200 nm. The microstructural analysis shows that the grain
boundaries at lower magnification and phase boundaries (lamellae
interfaces) at higher magnification. The grain and phase boundaries
of Cu and Ag will add obstacles to dislocation motion and hence
influence the mechanical behavior of the composite.

It is clear that the anisotropy of metals is due to the crystallo-
graphic texture that is present in polycrystals. It has been shown
that metal forming operations (drawing, rolling, extrusion) cause
changes in the texture and, thus, also the influence the deformation
response of the material [18,24,29]. We investigated the texture for
the cold drawn sample d1 by XRD measurements. For both phases
(Ag, Cu) of the sample d1, the XRD measured textures are plotted in
Figs. 3 and 4. Both Cu and Ag phases evolve the same alloy-type of
texture. The texture components observed in the Ag and the Cu
phase of the drawn sample are the stronger brass component ([110]
〈112〉) and the weaker cube component ([001]〈100〉) with volume
fractions that vary with orientations. It is clearly observed in the
ODF plot that the ϕ2 sections at 0° and 45° expose a strong brass
component. Both phases have the same texture features with only
small differences in the intensities, and are similar to those re-
ported previously for the Cu-24wt%Ag rolled sheets 4. The typical
texture for the Cu phase is the copper type ([112]〈111〉) texture,
while for the Ag phase it is the brass type ([110]〈112〉) texture [21].
From the results we see that the Ag phase has a strong brass con-
ponent, and the deformation of the sample is mainly controlled
by the Ag rich phase, and the lamellae orientation mainly along the
brass system ([110]〈112〉). The texture is similar to the results ob-
tained for rolled Ag by Ref. [30] and the eutectic Cu-72wt%Ag
composite by Ref. [24].

3.2. Microstructure and texture of drawn sample d2

Fig. 5 shows the microstructure of the sample d2 in the trans-
versal (T) and the longitudinal (L) directions. From the micrograph
(see Fig. 5A), it has been observed that the grain size has been
reduced from the center to the edge of the rod, since the outer
surface experienced the highest deformation during the drawing
operation. Also, the lamellae are curved because of the formation of
shear bands during the drawing process (see Fig. 5B). The final
microstructure is due to the interaction of lamellae and shear
bands. The micrograph (Fig. 5C and D) in the longitudinal direction
reveals multilayered Cu and Ag lamellae with a reduction in
average thickness of both Cu \((L_{\text{TCu}} = 46 \text{ nm})\) and Ag \((L_{\text{TAg}} = 114 \text{ nm})\) lamellae compared to the sample \(d_1\). For both phases, Cu and Ag, the reduction in thickness is in a similar fashion based on the fact that both have the same slip geometry and uniformity of phase shape and arrangement prior to the deformation [13]. The cold drawing operation from \(d_1\) to \(d_2\) leads to a decrease in grain size and
lamellae thickness, although the dislocation density has been increased because of the formation of new dislocations. The reduction in the grain/lamellae size in the sample d_2 creates grain/phase boundary barriers to dislocation motion. Therefore, the motion of dislocations has been delayed which results in increase of the strength of the material d_2.

In general, the texture of the material is influenced by the drawing strain. Therefore, the anisotropy of the material increases with increase in the drawing strain. The deformed texture measured by XRD of sample d_2 is given in terms of pole figures and ODF. Figs. 6 and 7 represent the XRD measured textures in the sample d_2. Fig. 6 reveals strong texture values for both Cu and Ag phases. Therefore the drawn sample d_2 provides a more pronounced texture than sample d_1. It is observed that the intensity of the texture components increases for both phases with increase in the drawing strain, i.e., from d_1 to d_2.

3.3. EBSD measurements

To investigate the deformed microstructure and orientation information of both phases, we employ EBSD measurements for...
both samples in transverse direction. Figs. 8 and 9 show the EBSD results of the drawn samples \(d_1 \) and \(d_2 \). We use the quantitative EDX information of the copper and silver phases, i.e., the red phase is the Ag rich solid-solution, and the green phase is the Cu rich solid-solution, as shown in Fig. 8A and Fig. 9A, Fig. 8B and C and Fig. 9B and C show the orientation maps of the Ag and Cu phases. Both are processed by OIM software. Abundant banded structures in the Ag phase have been observed (see dotted circles in Fig. 8B and Fig. 9B). In the literature [21], these banded structures are interpreted as twinned regions. In general, the deformation twinning occurs easily in Ag because of its low stacking fault energy [31]. On the other hand, the Cu phase has very few banded structures (see dotted circles in Fig. 8C and Fig. 9C). This indicates the possibility of the twinned structure inside the Cu and Ag phases. The unexpected formation of twins in the Cu is due to the propagation of twins from the Ag-rich solution into the Cu-rich regions (see also [21,32]).

3.4. Compression tests

The initial texture that develops in materials \((d_1, d_2) \) is not random, hence the stress–strain behavior is anisotropic. The stress–strain curve obtained during compression at a strain rate of \(10^{-4} \) s\(^{-1}\) for both samples in the two directions (longitudinal and transversal) are shown in Figs. 10 and 11. As one can see, the mechanical properties of the drawn sample \(d_1 \) and \(d_2 \) are direction-dependent (anisotropic). The yield strength value in longitudinal (L) direction is 14% higher than in the transverse direction (T) for the drawn sample \(d_1 \). This difference increases to 32% for the drawn sample \(d_2 \). The anisotropy in the mechanical properties of the material is due to the crystallographic texture. These results demonstrate that the yield strength increases with increase in the drawing strain, but also depends on the orientation. Figs. 10 and 11 show an increase in the strength with increase of wire deformation. The possible reasons for strengthening are the refinement of the microstructure and the evolution of crystallographic texture.

3.5. Texture evolution after compression testing

The compressed samples are once again prepared for the XRD measurements. The texture measurements for the sample \(d_1 \) are shown in Figs. 12 and 13, and for the sample \(d_2 \) in Figs. 14 and 15. The texture evolution after compressive deformation in both phases of the drawn sample \(d_1 \) led to typical deformation textures. In
the case of the Ag phase, the brass (110)〈112〉, goss (1011)〈100〉, copper (112)〈111〉, S (123)〈634〉 components are observed, and in the case of Cu phase the cube (001)〈001〉, brass (110)〈112〉, goss (1011)〈100〉, copper (112)〈111〉, S (123)〈634〉 components are observed. The texture development during plastic deformation in both phases of the drawn sample d1 led to an enhancement of the texture (see Figs. 12 and 13 (left)). Both phases have a strong brass component, and the texture becomes stronger compared to the uncompressed material. The Cu and Ag phases have a noticeable difference in the texture intensities. One can see in Fig. 12 that the $\varphi_2 = 0^\circ, 45^\circ, 65^\circ$ sections develop a strong brass component (110)〈112〉. The texture intensity is high for the Ag phase, and it can be clearly seen that the Ag brass texture component is the dominant component being responsible for the deformation of the material with an Ag rich phase and the Ag lamellae. Fig. 14 reveals that the increase in the texture intensity is not observed in both phases since the minimum intensity is recorded in the X-ray diffraction for both the phases. Possible reasons for this decline in intensity could be explained by dispersion of diffraction peaks in both the Cu and Ag phases observed at high strains in the eutectic rolled and drawn materials, and hence corresponds to a decline in X-ray counts during the measurement (see also [13,24]).

4. Conclusions

In conclusion, a comparison of two different cold drawn Cu–Ag composites exposes a correlation on the microstructure, initial texture, compressive deformation behavior, and the final texture. For both samples, the findings of a higher yield strength in the longitudinal direction reveals the presence of anisotropy. The anisotropic characteristics are also manifested in the true stress–strain curves for both drawn samples. It has been noted that banded structures and crystallographic texture introduce anisotropic mechanical behavior to the composites. These banded structures have been visualized from the EBSD measurements. Abundant banded structures are observed in the Ag phase, whereas very few banded structures are observed in the Cu phase. Both phases of the drawn samples initially have the same alloy type texture as shown in ODF plots. Texture measurements after compression tests of both samples reveal that the texture becomes more pronounced.

The increase in the yield strength from the sample d_1 to d_2 is observed due to the development of fine microstructure, the evolution of texture, and the refinement of banded structures. With
increase in the drawing strain i.e., d_1 to d_2, the banded regions are more refined and also influence the strength of the conductor materials. Therefore for the design of new and improved Cu–Ag composite materials for a high strength conductors, one must control the banded structures present in the starting material.

Acknowledgments

We thank Dr. Jens Freudenberg (IFW Dresden) for providing the samples for our investigations. We sincerely thank Prof. Thorsten Halle (University of Magdeburg) for proposing EBSD measurements and the contact with Dr. D. Dietrich (TU Chemnitz).

We thank A. Hilbig and H. Voß for assistance in XRD measurements, M. Ecke and H. Heyse for their assistance in carrying out the SEM. Financial assistance from German Science Foundation (DFG) through GRK1554 is gratefully acknowledged.

References